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SURFACE 

When the surface layer  of a condensed substance is rapidly heated by a l ase r  radiation, a peculiar  
effect takes place. After the a r r iva l  of waves of rarefact ion in the central  par t  of the heated layer  (from 
its boundary with the vacuum and f rom the colder l ayers  in which no energy is dissipated and the p r e s s u r e  
is low) the mater ia l  dis integrates ,  the surface layer  splintering in the opposite direction to the radiation 
flux (even for  concentrat ions of evolved energy f much smal le r  than the heat of vaporizat ion Q). For  values 
o f f  comparable  with Q, both evaporated and part ial ly evaporated mater ia l  flies off. This disintegration is 
accompanied by the appearance of a react ive  force and the development of a mechanical  "recoil"  momentum. 

Experiments confirming the existence of the effect in question were descr ibed ea r l i e r  [1]. "Semi- 
t ransparent  substances" (colored ice and paraffin and also copper c rys ta l  hydrate) were used. The ab- 
sorption coefficient and the mass  of the heated layer  underwent no severe  changes in the course  of heating. 
The ranges l0 of the radiation lay between 10 -2 and 3" 10 -2 cm. As the charac te r i s t i c  gas-dynamic  time in 
this problem, we may take the time required for sonic perturbat ions to propagate through the heated layer  
t 0= l 0/c0, where c o is the velocity of sound in the cold mater ia l .  In the experiments  here  described, the 
sound per turbat ions were unable to propagate through the heated layer  (tq~ to) during the period of opera-  
tion of the pulse tq (20 nsec), and the energy evolution could be regarded as instantaneous. An est imate 
of the p res su re  and the disintegration veloci t ies  was given elsewhere [2], and a general  picture of the de- 
velopment of splintering and of the (recoil) momentum was presented for f<< Q. 

In the Kalmykov experiments  [1], substances with a low heat of vaporizat ion were  used (the values 
for the three substances indicated above were 2.5, 0.8, and 0.6 kJ /g ,  respectively).  On increas ing  f ,  analo- 
gous exper iments  might be ca r r i ed  out with other mater ia l s .  

The energy concentrat ion may be increased  both as a resul t  of the energy supplied to the surface 
and also as a resul t  of a reduction in the thickness of the layer .  In the la t ter  case sound perturbat ions are  
able to propagate through the layer  well before the end of energy evolution, and the heating p rocess  cannot 
be regarded  as instantaneous. 

A model solution of the disintegration of a fixed mass  of mater ia l  heated continuously for a long t ime 
was presented  in [3]. The mater ia l  was regarded  as a gas with a constant adiabatic index y,  which is only 
permiss ib le  for f >> Q. In the intermediate  ranges (t o ~ tq and ~>> t0, but f ~ Q) any est imation of the pa- 
r ame te r s  of the disintegrating mater ia l  is very  difficult, and it is natural  to proceed  to a numerical  solution. 

The solution of this problem is not only of in teres t  f rom the point of view of obtaining a therore t ica l  
est imate of the pa ramete r s  for the conditions of the experiments  in question. Frequently the problem of the 
evaporation of a surface layer  of mater ia l  is considered on the basis  of the concept of an "evaporat ionwave."  
This is convenient when the evaporation takes place in a narrow (by compar ison with the dimensions of the 
whole problem) layer ;  either physical  detachment occurs  (surface evaporation), or  else there  is a thin t r ans i -  
tional layer  in which the vapor  concentratiQn increases  gradually (volume evaporation). The total mass  of 
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evaporated mater ia l  may considerably exceed the mass  of the transit ional 
layer  (this is associa ted with an increase  in the t ransparency  of the mater ia l ,  
for  example, a metal,  as evaporation proceeds) .  However, we may also en- 
counter the case in which the whole mass  of the evaporated mater ia l  is nearly 
equal to the total mass  of the layer  in which energy evolution is taking place 
(for example, the absorption coefficient remains  constant during the evap- 
oration). The foregoing experiments  in fact took place under these condi- 
tions. In the case of the fair ly hard ul traviolet  radiation emitted by ex- 
ploding sources  [4], the absorption coefficient also changes very  little until 
the mater ia l  is not only evaporated but also ionized. Up to this instant, the 
mass  of the heated layer  increases  little. Finally, even when optical rad ia-  
tion acts upon metals ,  there may be cases  in which the p r e s s u r e  is high com-  
pared with the cr i t ical  (van der Waals) p r e s s u r e  p ,  or  even exceeds it, and 
hence the introduction of a moving boundary in which the phase t r ans fo rma-  
tion takes place is quite impossible.  

In the case of the heating of a substance by an e l ec t r i c - cu r r en t  pulse 
(derived f rom the discharge of a powerful condenser  bat tery or  by the pene- 

trat ion of a high-intensity magnetic field) or  a powerful flux of fast  e lec t rons  (in the e lec t ron-beam machin-  
ing of mater ials) ,  analogous situations ar ise  as the surface layer  of the condensed mater ia l  undergoes in- 
tensive heating. 

In all these cases ,  it is natural  to have r ecour se  to a direct  numerical  calculation of the motion of the 
substance in question, allowing for  its possible two-phase nature, i.e., by using an equation of state descr ib-  
ing both the condensed mater ia l  and its gaseous form. 

1. The sys tem of equations of gas dynamics (momentum, continuity, and energy) describing plane 
nonstat ionary motions of mat te r  in Lagrangian coordinates takes the form 

au Op av au =- O, a(e + u~ /2) O(pu) o/ (1.1) 
-~F § -g-~m = O, ot o,n ot + a,~ = ~-F 

Here u is the m a s s  velocity, p the p res su re ,  v the specific volume, e the internal  energy, f the energy 
evolution in unit mass ,  O f  l O t  the intensity of energy evolution per  unit time, t the time, and m the mass  
coordinate.  

The equation of state may be writ ten in the following form:  

i 
e = e  l ~ e ~ : B v o ~ p ( y ) - ~ e ~ ,  B :  p0c0 ~, v o = -  p0 

P = F1 ~- P~ = Bq~ (y) + e2p (T -- i), (1.2) 

'V = Y (e~ / Bvo, y) ,  d~ 2 = - -  dy,  g = O---~ 

Here B is the bulk compress ion  modulus, P0, co, v0 are  the density, the velocity of sound, and the spe-  
cific volume in the "normal"  state, el, Pl are  the "cold" (or "elastic") components of internal energy and 
p ressu re ,  e2, P2 are  the hot components,  T is the effective adiabatic index. For  the calculations described 
in the present  t rea tment  we took 

r ~- y" --  y~ (n ~ k ~ i) (1.3) 

The heat of vaporizat ion is then re la ted to By 0 in the following manner :  

Q = By0 (n --  k) / [(n --  l) ( k  i)] (1.4) 

In addition to this, we consider  that T =T (e2/Bv0), i.e., depends solely on the rat io of the thermal  en- 
e rgy  to the heat of vaporizat ion.  We note that for T = const the thermal  par t  of the p re s su re  may also be ex- 
p re s sed  in the fo rm 

p~ = e~e (~ - i )  = y ~ F ( s )  ( 1 . 5 )  

where F(s) is the entropy function. 
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We as sume  that the separa t ion  of the expanding ma te r i a l  into individu~ phases  (the condensed medium 
and the vapor)  follows ins tantaneously  af ter  the change in the the rmodynamic  p a r a m e t e r s ,  for  example ,  on 
re laxat ion  a f t e r  the pa s s age  of a shock wave. The boundary ofthe two-phase  region p= Pv(V) is found f rom 
the o rd inary  condition, namely ,  as the line connecting points sat isfying the condition (for e 2= const) 

Vg 

V~ 

Here  Vg and Vc a re  the speci f ic  vo lumes  of the gaseous  (index g) and condensed (index c) phases  for  
a p h a s e - t r a n s f o r m a t i o n  p r e s s u r e  of Pv (Fig. 1). The c r i t i ca l  (in the van der  Waals  sense)  point (p , ,  p , )  is 
found f r o m  the usual  re la t ion  

@ / dp = 0 ,  d~p I dp ~ = 0 fo~ e~ = c o n s t  ( 1 . 7 )  

For  n = 3 ,  k = 2 ,  p .  =1127B , p,=ll~Po. At this point e= l%Q, with e l = % Q  and e2= 213Q. We note that all 
these  values  a re  independent of y .  Fo r  a p r e s s u r e  p= 0 .1p ,  and ~/= 2, at the boundary of the two-phase  
region we have ec= 0.40Q, and for  p= 0.01p,  we have ec= 0.22Q. 

If the p r e s s u r e  ca lcula ted  f r o m  Eq. (1.2)is l e s s than  Pv 60), the m a t e r i a l  l ies  in the two-phase  region.  

The specif ic  volume and in terna l  energy  in this region a r e  desc r ibed  in the following m a n n e r :  

v = v o ( l  - -  ~ ) +  vg~ 

e = e o ( l  - -  ~)  + e ~  ( 1 . 8 )  

where a is  the m a s s  p ropor t ion  of m a t e r i a l  conver ted  f r o m  the eondensed to the gaseous  s ta te .  Each of 
the quant i t ies  e c and eg depends only on the t e m p e r a t u r e ,  the following conditions being sa t i s f ied :  

r = T0 = rg = To (p) (1.9) 

where  T V i s  the equi l ibr ium t e m p e r a t u r e  of the phase  t r ans fo rma t ion .  

Let  us cons ider  the quest ion of the adiabatic index y for  the two-phase  region.  F o r  compara t i ve ly  
low p r e s s u r e s  (p << p ~) the specif ic  vo lume v c << Vg. Hence even fo r  compara t ive ly  low v a p o r  concentra t ions  
we may  neglec t  the f i r s t  t e r m  on the r ight -hand side of (1.8) and put V=Vg~.  Then the express ion  for  eg 
may be wri t ten  as 

v pray, (1.10) eg~-.e --ec=(eg - -  ec)  at = (eg - -  ec)  v ~  ~ (eg  - -  e~) 

Here  R is  the un iversa l  gas constant ,  A w is the a tomic weight; for  the vapo r  phase  we have used the 
equation of an ideal  gas .  Equation (1.10) may  be given the usual f o r m  

eg = e - -  e~ = p___~v R7 (1.11) 

A long way f r o m  the c r i t i ca l  point {p<< p . ) ,  Eq. (1.9) is  such that the t e m p e r a t u r e  T v changes ve ry  
l i t t le  for  a cons ide rab le  change in p, and e g - e c =  Q. Hence the motion of the two-phase  mix tu re  of ma t e r i a l  
occurs  p rac t i ca l ly  in an i so the rma l  manner ,  and to a f i r s t  approximat ion  we may r e g a r d  T, eg, e c, and y 
as constants .  

Fo r  p r e s s u r e s  of 102-103 b a r s t h e  ave r age  value of RTv/AwQ usual ly  equals ~,  and hence ~/= 1.2. 

Subsequently we shall  cons ider  that  the internal  energy  of the vapo r  eg ~ 0 as T ~ 0, while the in terna l  
energy of the condensed phase e c equals Q at T= 0. 

However ,  the or igin for reckoning the value of e is  not ve ry  impor tant .  Fo r  p rob l ems  re la t ing to the 
heating and dis integrat ion of a two-phase  medium,  taking Tv= const,  we may  the re fo re  put e c = 0 (i.e., we 
may take as or igin the in ternal  energy  of the condensed phase  at the t e m p e r a t u r e  of the phase  t r a n s f o r m a -  
tion), and then Eq. (1.11), the equation of s ta te  of the two-phase  mixture ,  wilt exact ly  coincide with the equa-  
t ion of s ta te  of an ideal gas.  

Relaxing i s en t rop ic s  with different  F(s)} a re  shown in Fig. 1 (indices 0, 1, 2, 3, 4 co r r e spond  to 
F/B= O, 0.027, 0.29, 0.50, and 1 .28, respect ively) .  The s a m e  f igure i l l u s t r a t e s  the boundary of the two-phase  
region fo r  the equation of s ta te  taken with n= 3, k= 2, y = 2 (the grounds for  the choice of these  va lues  a re  
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given elsewhere [2, 5]), We note that the equation of state used differs little f rom that of water  [6]. In the 
same Fig. 1 the double dotted and dashed line represents  equal concentrat ions of the gas phase ~, 

We also considered the motion of the mater ia l  without allowing for  separat ion into phases,  despite 
the fact  that the mater ia l  a l ready lay within the region Pv 60), so that the separat ion of the kind envisaged 
was quite feasible.  This kind of situation may ar i se  in a very rapid expansion of mater ia l  in a metastable 
state. For  this case  Eqs. (1.2) and (1.3) were everywhere  employed without considering (1.4) and (1.6). 

2. We ca r r i ed  out our numer ica l  calculation of the equations of gas dynamics by allowing for energy 
evolution in accordance  with a difference scheme based on the method of integral relationships.  Since this 
scheme is c lear ly  of independent interest ,  we may devote a brief  discussion to its underlying principles.  

The idea of us ing integral  relat ionships is not new. This method was descr ibed in [7] and used for  
solving stat ionary two-dimensional  problems in [8] and nonstat ionary one-dimensional  problems involving 
a shock front  in [9]. In these cases  approximations re la t ing  to the values of the functions at all points of 
space were used, and only a comparat ively  small  number  of integration bands were required, this being due 
to the smoothness of the solution. The problems now under considerat ion involve waves of compress ion  and 
rarefac t ion  interact ing with one another, and an approximation extending over  the whole range or  a con- 
s iderable proport ion of the la t ter  is undesirable,  it being bet ter  to use interpolation within a small  region 
only. We note that this method is s imi la r  to the integro-interpolat ional  method descr ibed in [10] and used 
for  parabolic  equations. We may also mention that in its initial vers ion  (replacing the functions within the 
cell by thei r  mean values) this approach was used by one of the authors in [11]. 

Let us consider  the equation 

__g.i_.+__ff~mOM: 0to + F = 0 (2.1) 

which for an appropriate  choice of M, N, and F represen ts  any of the sys tem (1.1). 

Let the whole mass  of the problem be divided up (by re fe rence  points mi) into n par ts  with intervals  
of 5m i, and let the functions M, N, and F be specified at each point in the j - th  l ayer  with respect  to time. 
In each interval  (mi_l, mi+~) we approximate the functions M, N, and F by their  values at the points mi_ 1, 
mi, mi+ 1 (i= 1, 2 . . . . .  n - l ) :  

aim a -t- b~m A- cl -~ 0 (2.2) 

Here the symbol l determines  which of the three functions M, N, and F the parabola  represents .  We 
note that the coefficients al, ~l, cl depend on the values of the / - th  function at the points mi, mi_l, mi+ 1. 

Let us integrate Eq. (2.1) with respec t  t o t h e  intervals  

(1/2 (mt A- mi_l), 1/2 (mi -4- mi+l)) : -  (mLu~, m~+l/~), 

i= 1, 2 . . . . .  n - l ,  and with respec t  to the boundary intervals  (0, m~/2), ((mn_l+mn)/2,  ran). 

As a resul t  of this, Eq. (2.1) reduces  to a sys tem of ordinary  differential equations of the following 
fo rm:  

dM (2.3) A-~-  = (I) 

where A is a three-diagonal  matr ix  of dimensions (n+ 1) 

dM [ dMo dMn I 
" ~  ~- ~ dt . . . . .  " dt ] '  d)  = ((79o , ~)1 . . . . .  (TJ)n) 

Then Eq. (2.3) is solved relative to the derivat ives dMi/dt using the well known reduction method for 
ma t r i ces  of type A, and (2.3) is converted to the form 

a~ = r  ((I)'= A-l@) (2.4) 
dt 

The nondegeneracy of the matr ix  A is  quite easi ly verified. 
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The resu l tan t  s y s t e m  (2.4) is solved by the numer ica l  Euler  method with convers ion .  The t ime  step 
is chosen f r o m  cons idera t ions  of s tabi l i ty .  The stabi l i ty  condition, a f te r  ver i f ica t ion  on model  equations 
of the 

ou K ou (2.5) 
~Y ~ om 

type, coincided with the ord inary  condition fo r  the equations of gas  dynamics  : 

At j ~ rain (6 rn~ [ p~ ct) 

where  Pi and c i a r e  r e spec t ive ly  the densi ty and veloci ty  of sound at the point m i in the j - th  l a y e r  with r e -  
spect  to t ime,  while AtJ is  the t ime  step f r o m  the j - th  to the {j + 1)th l ayer .  

Let  us  cons ider  the model  equation (2.5) and p re sen t  some m o r e  detai led ca lcula t ions  for  the case  
6 m i = c o n s t =  5m, K -= 1. Under these  conditions the coefficients  of the pa rabo la  (2.2) will take the f o r m  

a =  25ra~ , b = -  2~m ' c-----u~ (2.6) 

{it is a s sumed  that the or igin  of coordinates  is  d isplaced to the point m i, but this in no way v i t ia tes  the gen-  
e ra l i ty) .  Then af ter  in tegra t ion of Eq. (2.5) we obtain 

t i  dui . i /du i  ~ du~+i ~ ui+i--ui-:t (2.7) ~ - ~  + - ~  ~--~-~ + ~ j =  ~ 

Simi la r  opera t ions  a re  c a r r i e d  out for  all the points i, i=  1, 2 . . . . .  n - 1 .  

After  in tegra t ion  with r e spec t  to the in te rva l s  (0, m~/2) and (ran_ 1 + 6m/2,  mn) we obtain two fu r the r  
equ ati ons: 

2 duo 5 dui i du~ 6ul-- 5u0-- u~ (2.8) 
3 dt ~ i2  dt T ~ ' - ~ - =  4 6 m  - 

2 du n 5 dun- i I dUn-~ 5u n A- Un_l - -  6Un_ 2 
~ ' ' ~ - ~  12 dt i2 dt 45m ...... 

In this way we have obtained an a lgebra ic  s y s t e m  of equations in the de r iva t ives  dui/dt  (i = 0, 1 . . . . .  n) 
having dimensions  in+ 1) and a ma t r ix  A,which may  readi ly  be seen f rom Eqs. (2.7) and (2.8). 

R e m e m b e r i n g  that the r igh t -hand  s ides  of (2.7) and (2.8) a re  taken in the j - th  l a y e r  with r e s p e c t  to 
t ime,  in which they a r e  known quanti t ies ,  ~ e  solve this s y s t e m  of equations by the reduct ion method and 
der ive  the s y s t e m  of equations 

dutldt.----(I) ( (~ ~- 0, l ,  2 . . . .  n) (2.9) 

Applying the numer i ca l  Euler  method with convers ion  to (2.9), we obtain at the f i r s t  s tage 

Ui +i -~ u~ "i ~ (At ~'l -~- At j) q)~' (2.10) 

Here  f r o m  stabi l i ty  cons idera t ions  a t h r e e - l a y e r  scheme was chosen.  

After  the calcula t ion of all  the U i (i= 0, 1 . . . . .  n) on the r ight-hand s ides  of the s y s t e m  (2.7), (2.8) all 
the u i a re  r ep laced  by Ui,and this s y s t e m  is  again solved for  the der iva t ives .  We obtain a new s y s t e m  of 
equations 

Then we solve the following sys t em:  

according to the t w o - l a y e r  scheme  

du i / dt -~ ~ '  (2.11) 

du d dt ~- ( r  ~- ~F() 1 2 (2.12) 

u~ § = u j  -~- At/(qb( Jr, ~ ' ( )  / 2 (2.13) 

The resu l tan t  va lues  of ui j+l (i = 0, 1 . . . . .  n) a re  r ega rded  as the final va lues  fo r  the 0 + 1)th l aye r .  The 
genera l iza t ion  to the case  of s y s t e m  (1.1) is  obvious. 
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t ions  

way: 

We note, f inal ly ,  that  in o r d e r  to be able to solve p r o b l e m s  involving d iscont inui t ies  in the i r  so lu-  
the Neumann a r t i f i c i a l  v i s c o s i t y  [12] has to be in t roduced into the equations of sy s t em (1.1). 

3. We shal l  cons ide r  that  the ene rgy-evo lu t ion  function for  unit m a s s  of m a t e r i a l  v a r i e s  in a s i m i l a r  

gq t ra 

Here  tq i s  the t ime  of act ion of the source ,  m 0 i s  the c h a r a c t e r i s t i c  mass ,  Eq i s  the total  energy  sup-  
p l ied  to unit su r face  (Eq / tq=q  i s  the ave rage  ene rgy - f l ux  densi ty) .  This  is  sa t i s f i ed ,  for  example ,  for  the 
ease  in which r ad i a t i on  fa l l s  on the m a t e r i a l  at a constant  flux densi ty q and the absorp t ion  coeff ic ient  x 
i s  cons tant :  

O] ] St ---- ~ q exp (--~r (3.2) 

It was a s s u m e d  in Section 1 that  the equation of s ta te  s a t i s f i ed  the law of co r r e spond ing  s ta tes ,  i .e . ,  
the fo rms  of the functions q~, r and 3/ we re  unchanged. In this  case  we may argue  on the b a s i s  of the s i m i -  
l a r i t y  of  hydrodynamic  mot ions  with heating.  

Let  us in t roduce  some d imens ion l e s s  v a r i a b l e s  by r e f e r r i n g  the d imens iona l  v a r i a b l e s  to the c o r -  
responding  c h a r a c t e r i s t i c  d imens iona l  p a r a m e t e r s .  F o r  the p r o b l e m s  under  cons ide ra t ion  it is  na tu ra l  to 
choose as  the c h a r a c t e r i s t i c  value of the p r e s s u r e  p the bulk c o m p r e s s i o n  modulus B and as the c h a r a c t e r -  
i s t i c  of densi ty  the in i t ia l  densi ty  P0. As c h a r a c t e r i s t i c  of spec i f ic  in te rna l  energy,  we may choose Bv 0 (this 
combinat ion i s  p ropor t iona l  to the heat  of vapor iza t ion  Q, and for  n= 3 and k= 2 i t  equals  2Q). 

Then the equation of s ta te  for  the d imens ion le s s  v a r i a b l e s  r e m a i n s  in the same fo rm as  in Section 1 

but with B = 1, v 0 = 1. 

As c h a r a c t e r i s t i c  ve loc i ty  i t  i s  r ea sonab le  to take ~ the "cold" ve loc i ty  of sound c o at normal  
densi ty ,  and as  c h a r a c t e r i s t i c  m a s s  the quanti ty m 0 in the energy-evo lu t ion  law (3.1). F o r  the case  of (3.2) 
i t  i s  na tu ra l  to put m0= 1 /~ .  As c h a r a c t e r i s t i c  t ime  we take the t ime  for  sound pe r tu rba t i ons  to propagate  
through the l a y e r  to= x0/c 0=m0p0/B4-B-~0. Then the s y s t e m  of equations (1.1) t akes  the same  fo rm for the 
d imens ion le s s  v a r i a b l e s  as for  the d imens iona l  v a r i a b l e s ,  except  for  the energy  equat ion:  

~ _~ O(pu)om " ---- E~l~, E = moBvcgq (3.3) 

Here  the d imens ion l e s s  v a r i a b l e s  a r e  denoted in the same way as the d imens iona l .  The d imens ion-  
l e s s  s i m i l a r i t y  c r i t e r i o n  E c h a r a c t e r i z e s  the extent  to which the energy  concent ra t ion  at the edge of the 
m a t e r i a l  exceeds  twice i ts  heat  of vapor iza t ion .  In the in i t ia l  s ta te  we shal l  r e g a r d  the m a t e r i a l  as mot ion-  
l e s s ,  absolu te ly  cold,  and having a n o r m a l  densi ty .  In d imens ion le s s  v a r i a b l e s  the in i t ia l  data take the fo rm 

u ~ - e ~ - O ,  v = t ,  O ~ m ~ M ,  t ~ - O  (3.4) 

Here  M is  the to ta l  d imens ion l e s s  m a s s  of the p r o b l e m  (the d imens iona l  m a s s  equals  Mm0). 

The boundary condit ions at the " lef t -hand edge" {from whence the rad ia t ion  a r r i v e s )  c o r r e s pon d  to 
an outflow into vacuum (p= 0),and at the " r igh t -hand  edge" an analogous condit ion o r  a " r ig id"  s t a t ionary  

wal l :  

u = 0 ,  m-~-M (3.5) 

The l a y e r  of heated and d i s in teg ra t ing  m a t e r i a l  is  often v e r y  thin (by c om pa r i s on  with the whole th ick-  
n e s s  of the m a t e r i a l ) .  It  is  inconvenient  to c a r r y  out g a s - d y n a m i c  ca lcu la t ions  in the range  m>> 1, s ince it 
i s  c l e a r  that  in th is  reg ion  a weak shock wave o r  in an e x t r e m e  case  a wave of mode ra t e  in tens i ty  will  
p ropaga te  f rom the zone of energy  evolution under  the influence of the p r e s s u r e  on a c e r t a i n  su r face  (the 
motion of the wave may be d e s c r i b e d  in the q u a s i - a c o u s t i c  approx imat ion  [13]). This p r e s s u r e ,  however,  
is  not p r e s p e c i f i e d  but has to be found f rom the solut ion of the g a s - d y n a m i c  equation with a "soft wall" 
condition, const i tu t ing the r e l a t i on  between the p r e s s u r e  and the ve loc i ty  in weak waves  and waves of mod-  

e r a t e  intensity:  

p ~ (i -~- ~u) u (3.6) 

where  fl i s  a constant  c lose  to 1.5. F o r  p<< 1 we have u<< 1, i .e . ,  for  weak waves or  p r e s s u r e s  much s m a l l e r  
than B condit ion ( 3 . 6 ) t r a n s f o r m s  into (3.5). 
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Thus,  in  t h i s  p r o b l e m ,  wi th  e x a c t l y  the  s a m e  f o r m  of  the  func t ions  r (p, 4, ~?, and ~/, we have  t h r e e  
p a r a m e t e r s :  E, M, and the t o t a l  d i m e n s i o n l e s s  hea t ing  t i m e  "r = t q / t  0. 

I f  t h e r e  i s  a l a y e r  of c o n s i d e r a b l e  ex t en t  wi th  no e n e r g y  evo lu t ion  beh ind  the h e a t e d  l a y e r ,  we m a y  u s e  
cond i t i on  (3 .6 )a t  an a r b i t r a r y  (but f a i r l y  r e m o t e )  po in t  M>>I (so tha t  the  r e s u l t  m a y  be i ndependen t  of M and 
/3) and c o n s i d e r  tha t  the  c a l c u l a t i o n  c o r r e s p o n d s  to  M = ~ ,  whi l e  the  so lu t ion  depends  s o l e l y  on the two p a -  
r a m e t e r s  T and E. 

4. Le t  us  g ive  the  r e s u l t s  of a n u m b e r  of c a l c u l a t i o n s  (for n= 3, k =  2, 7 = 2, and fi = 1.5) w h i c h w e  c a r -  
r i e d  out in  r e l a t i o n  to  E and ~-. As  func t ion  f we c h o s e  tha t  r e p r e s e n t e d  by  Eq. (3.2). Then 

~=I, 0 ~ t ~ " q  ~ = 0 ,  t ~ ' ;  ~]=exp(--m) (4.1) 

The p a r a m e t e r  T shows  how m a n y  t i m e s  du r ing  the  hea t ing  p e r i o d  ( i .e . ,  in  a t i m e  tq) sound  p e r t u r b a -  
t i ons  would  be ab le  to p e n e t r a t e  t h rough  a l a y e r  of t h i c k n e s s  l 0 (with the  i n i t i a l  v e l o c i t y  of sound  co), i . e . ,  
i t  c h a r a c t e r i z e s  the  d u r a t i o n  of the  h e a t i n g  p r o c e s s .  H e r e  we d e s c r i b e  the  d i s i n t e g r a t i o n  p r o c e s s  t ak ing  
p l a c e  in the m a t e r i a l  fo r  10->E_>0.5, 100 ~ 7- _>10. 

B e f o r e  g iv ing  the  r e s u l t s  of the  c a l c u l a t i o n s  of the  " d i m e n s i o n l e s s "  s e r i e s ,  we would  m e n t i o n  tha t  
t h e s e  m a y  be  u s e d  f o r  f ind ing  the p a t t e r n  of the  mo t ion  and d e t e r m i n i n g  a l l  the  p a r a m e t e r s  f o r  v a r i o u s  "d i -  
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mensional"  vers ions .  For  example, we may indicate that, for a heat of vaporizat ion Q= 1 kJ /g  and an initial 
density o f  the mate r ia l  P0 = 1 g / c m  3, according to the equation of state used, B = 20 kbars ,  p ,  = 0.7 kbar, and 
Co= 1.4 k m / s e c .  Approximately the same values Q, P0, B, and c o applied to the mate r ia l s  used in the ex- 
per iments  [1]. In [1] the thickness of the layers  was of the order  of 10 -2 cm. Here we consider  thinner 
l ayers  (or g rea te r  interact ion times).  Let lo = 10 -3 and 10 -4 cm; then the t ime t o for the propagation of sound 
through the layer  equals 7 and 0.7 nsec.  For  a dimensionless  duration of the p rocess  T = 10 and 100 we 
obtain tq = 70 nsec, which cor responds  to a typical duration of the p rocess  of energy supply in a '~giant" 
pulse. 

The cha rac te r i s t i c  m a s s  m 0 of the l ayer  equals 10 .3 and 10 -4 g / c m  2, so that m02Q=2 and 0.2 kJ /g ,  
and the dimensionless  p a r a m e t e r  E= 0.5-10 cor responds  to values of Eq= 1-20 J / c m  2 for "r = 10 and 0.1-2 
J /e ra  2 for  T = 100 (or flux densit ies q=20-400  and 2-40 MW/cm 2, respectively).  A l a se r  pulse may be ex- 
tended, let us say, up to 500 nsec.  Then, for  the same values of the dimensionless  pa ramete r s ,  in o rder  to 
c rea te  the same p res su re ,  velocity, and gas density (but over a 10-t imes g r ea t e r  time) as in the case  of a 
pulse 50 nsec long, we requi re  that the initial thicknesses of the heated layers  should be increased  to 10 -2  

and 10 -3 cm, the energies  by a factor  of 10, while the flux density of the radiation should remain  the same.  

When optical radiat ion acts  upon metals ,  the charac te r i s t i c  tMckness l0 of the heated l ayer  is smal ler ,  
of the o rde r  of 10 -5 cm. Let Q= 1 kJ /g ,  po = 10 g / c m  3, B = 2 0 0 k b a r s , p ,  = S k b a r s , c o =  1.4 k m / s e c  (parameters  
s imi la r  to those of lead). Then we obtain to= 0.07 nsec.  For  ~" = 10 we have to= 0.7 nsec.  For  m0= 10-4g/cm 2 
we obtain m02Q= 0.2 J / c m  2, and the values of the pa rame te r  E= 0.5-10 cor respond  to Eq= 0.1-2 J / c m  2 and 
q = 140-2800 h~u  2. 

Usually when consider ing the effect of l a se r  radiation on metals  we allow for  two additional fac tors :  
the thermal  conductivity and the change taking place in the t ransparency  of the meta ls  during disintegration. 
Let the thermal  diffusivity be 0.1 cm2/sec (the value for  molten lead at T= 1000~ for  higher t empera tu res  
no data are  available). Then in a t ime t= 10 -8 sec the expansion of the heated layer ,  allowing for thermal  
conductivity, is approximately 10 -~ cm, i.e., the pat tern of the process  is not ve ry  ser ious ly  distorted. 

Thus the resu l t s  of our calculations in the range of q under considerat ion may be used to give an ap- 
proximate descript ion of the initial stage in the action of a l a se r  beam on metals  for  t imes over  which the 
expansion is negligible. 

L e t  us consider  the case  ~" = 100, E = 10. (Subsequently in this Section we shall use dimensionless 
variables . )  Figure  2 i l lus t ra tes  the p r e s s u r e  distribution with respect  to mass  at var ious  instants of t ime. 
We see how a p r e s s u r e  wave pass ing into the inside of the mater ia l  is formed.  During almost  the whole 
t ime of energy supply the p r e s s u r e  is close to the van der  Waals cr i t ical  value (p,  = 0.037). 

The p r e s s u r e  relat ion p(t) at a depth m=  2 is shown for  the same case  in Fig. 3 (by the dotted and 
dashed line); p(t) is r e f e r r e d  to the E/ 'r  dimensionless  flux density. For  comparison,  the same figure shows 
analogous relat ionships for E = 1 (broken line) and for  E = 0.5 (continuous line) at the same depth and for the 
same duration T. In all cases  a sharp p r e s s u r e  peak is c lear ly  to be seen. 

Figure 4 shows the distribution of v(m) at different instants of time t for  the case  T = 100, E= 0.5. 

We see that the density of the heated l ayer  falls considerably in compar ison with the initial density 
(by severa l  o rde r s  of magnitude). It should be noted that it is not only the l ayer  in which the main par t  of 
the energy is l iberated which dis integrates .  Thus at the instant t= 100 a considerable  fall s ta r t s  taking 
place in the density of  the l ayer  with mass  m -< 1, in which the concentrat ion of energy evolved equals 0.37Q, 
and at the moment t= 133 the density in the l ayer  with m -< 1.2, in which the concentrat ion of energy evolved 
equals 0.30Q, also s ta r t s  falling sharply.  Since these l aye rs  expand with small  veloci t ies ,  a charac te r i s t i c  
"spur" is created,  and we may a rb i t ra r i ly  speak of a boundary between the evaporated and nonevaporated 
layers .  

For  large t ime values,  deeper l ayers  s ta r t  disintegrating. This is associa ted with the fact that in 
the equation of state taken for the present  se r i e s  of cases  the curve of phase equil ibrium proceeds  in such 
a manner  that the t empera tu re  of the phase t ransformat ion  Tv(p) ~ 0  as p --*0. For  such an equation of state 
all the mater ia l ,  however much heated, ul t imately dis integrates .  In actual pract ice ,  however, for  low phase-  
t ransformat ion  t empera tu res  the p roce s s  of volume vaporizat ion can hardly occur  at all. We note that if 
we consider  the pat tern  of the p roces s  for  any finite t ime comparable  with the per iod of action, then as a r e -  
sult of the low veloci ty of disintegrat ion of these l ayers  they will hardly be able to expand at all. Fo r  ~" = 100 
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and 10 our  ca lcu la t ion  extended to t=  140 and 60; in ca lcula t ing  the momentum,  the p r e s s u r e  drop was sub-  
sequently r e g a r d e d  as taking p lace  in accordance  with a power  law. 

Let  us now c o n s i d e r  the case  1- = 10, E = 0.5. 

In F ig .  5 the continuous l ine ind ica tes  the change in p r e s s u r e  with t ime  at a depth m =  M= 8. F o r  com-  
pa r i son ,  the same  f igure  shows analogous r e l a t i onsh ips  for  the c a s e s  v = 10, E= 1 {broken line) and ~- = 10, 
E= 10 {dotted and dashed line) at the same depth ( p r e s s u r e s  divided by E/T) .  We notice the sha rp  fal l  in 
p r e s s u r e  at the ins tan t s  t= 18-20 for  E= 0.5 and 1.0. On fu r the r  reducing  E, the p r e s s u r e  be c om e s  negat ive,  
and sp l in te r ing  may occur .  This may c l e a r l y  be seen in F igs .  6 and 7, in which the p r e s s u r e  is  shown in 
r e l a t ion  to m a s s  at va r ious  ins tan t s  of t ime with E = 0.5. We see  that  the in i t ia l  pe r tu rba t ion  with an ex-  
ponential  leading edge moves  into the deeper  l a y e r s  of the m a t e r i a l  (at the moments  of t ime  t ml-4) .  Then 
the p r e s s u r e  r i s e s  again as a r e s u l t  of the continuing energy evolution (at the end of energy evolution t = 
~- = 10). Af te r  the conclus ion of energy  evolution (t > ~) the re  i s  a sharp  fal l  in p r e s s u r e  in the r e g i o n m  ~1, 
p ropaga t ing  into the deeper  l a y e r s .  We even obse rve  negat ive p r e s s u r e s  (in th is  reg ion  the sepa ra t ion  of 
the m a t e r i a l  into phases  was not taken into account), but in this  v e r s i o n  they a r e  sma l l  in magnitude.  This 
i s  evident ly  a s s o c i a t e d  with the fact  that  in ce r t a in  l a y e r s  which have not ye t  evapora t ed  the s to re  of t h e r -  
mal  energy is s t i l l  quite l a rge .  The expansion of th is  l a y e r  i s  not p a r t i c u l a r l y  g rea t ,  as i t  is  compensa ted  
by the back p r e s s u r e  a r i s i ng  f rom the act ion of the escaping  vapor .  Af ter  the end of energy  evolution and 
the co r r e spond ing  reduct ion  in vapor  p r e s s u r e ,  a sha rp  expansion occurs  in the d i rec t ion  of the vacuum, ac -  
companied  by an a t t r ac t ion  acting on the adjacent  cold l a y e r s  and dragging them in the same  di rec t ion .  

This i s  suppor ted  by the v e l o c i t y - d i s t r i b u t i o n  graph,  which i s  not r ep roduced  here .  At ins tan ts  of 
t ime  c lose  to t =  10 we obse rve  sha rp  changes in the ve loc i ty  of the l a y e r s  adjacent  to the evapora t ing  l aye r .  
F i r s t  these  l a y e r s  acqui re  negat ive  ve loc i t i e s  (motion in the d i rec t ion  of the vacuum),  then a r e v e r s e  mo-  
t ion occurs ,  as the e l a s t i c  fo rces  p reven t  the i r  detachment .  As the p r e s s u r e  fa l l s ,  so does the p h a s e - t r a n s -  
fo rmat ion  t e m p e r a t u r e ,  and the evapora t ion  of s e v e r a l  addit ional  l a y e r s  be c om e s  poss ib l e .  

F igu re  8 shows the d i s t r ibu t ion  of spec i f ic  volume for  E = 10, T = 10. We see that at the ins tant  at 
which energy evolution c e a s e s ,  m a t e r i a l  with a mass  of m ~0.80 f l ies  apar t ,  the energy concent ra t ion  for  
this  being app rox ima te ly  0.45 Q, while at the ins tant  t= 62 the s ame  occur s  for  the l a y e r  with m a s s  m= 1.2, 
where  f =  0.30Q. We note that in this  case ,  at no point of the m a t e r i a l  does the energy concent ra t ion  ex-  
ceed the heat  of vapor iza t ion ,  even at the end of energy  evolution; neve r the l e s s ,  d i s in tegra t ion  of the p a r -  
t i a l ly  evapora t ed  m a t e r i a l  t akes  p lace .  As in the other  c a s e s  a na r row zone of sha rp  densi ty  reduct ion  
appea r s .  

With i n c r e a s i n g  pe r iod  of energy evolution the dynamic effects  play a l e s s  and l e s s  s ignif icant  par t .  
The p a r t i a l l y - e v a p o r a t e d  m a t e r i a l  d i s i n t eg ra t e s  with very  low ve loc i t i e s  s ince a c ons i de r a b l e  p ropor t ion  
of the energy  has to be spent  in evapora t ion .  The negative s t r e s s e s  vanish comple te ly ;  sp l in te r ing  becomes  
quite i m p o s s i b l e .  

5. By compar ing  the p(t) r e l a t i onsh ip s  for  va r ious  va lues  of E and 1-, we see that  the r i s e  in p r e s s u r e  
at the f i r s t  max imum is  in approx imate  ag reemen t  with the value e s t i m a t e d  in the following manner  (here 
and subsequent ly  we r e tu rn  to d imens iona l  va r i ab l e s ) .  Let the m a t e r i a l  be s t a t iona ry .  Then, as a r e s u l t  
of the energy evolution {uniform with r e s p e c t  to mass )  in it, the p r e s s u r e  i n c r e a s e s  in accordance  with the 
law 

p = (~ - -  ~,) E t  / (pomotq)  ~ -  ('~ - -  t )  E t / ( x o t ~ )  (5.1) 

{pressure  of comple te ly  " the rma l"  or igin) .  
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The wave of ra re fac t ion  propagates  through a uniformly heated layer  of mass  ~/2m0 (to the center  of 
the heated layer) in a t ime ~/2t0. In this t ime the p r e s s u r e  reache~ the value 

p = E (V - -  i) / (2t~co) (5.2) 

After the waves of rarefac t ion  have propagated through the heated layer ,  the p r e s s u r e  i~ the la t ter  
should fall. This p r e s s u r e  may be determined on the basis  of a thermoelas t ic  solution of the l inearized sys -  
tem derived f rom (1.1) for  A p / p o = A y < <  1. Here we simply present  es t imates .  

The main par t  of the energy is consumed in heating the substance.  Hence in the range 0-<m ~ m  0 

e = e 2 = • qt  (5.3) 

The increas ing thermal  p r e s s u r e  is compensated by the negative elast ic  p r e s s u r e  

p _~ B A y  + e~ Po (7 --  i) ~ 0  (5.4) 

Hence 

A y ---~ --  (7 --  l)p0u qt  / B (5.5) 

In addition to this, using (5.5), we obtain the following f rom the equation of continuity: 

u -~- (7 --  i) q ] B (5.6) 

F rom the momentum equation we have 

p = u m  ] t = (7 - -  1)q.] (B  u t) ----- p~  (t ~ ] 0 (5.7) 

where p~ is the p r e s s u r e  at the instant of t ime t ~ determined f rom (5.1). Naturally this p r e s s u r e  only acts 
at the boundary of the heated layer  with the cold layers ,  while at the boundary m= 0, as before,  p= 0. When 
evaporation begins, the p r e s s u r e  again s ta r t s  rising, and then after  a considerable expansion of the l aye r  
into the vacuum it falls,  roughly speaking, in accordance  with the "gas" Iaw [3] 

p_x{  3(~-t)q Iv, (5.8) 

where X is a coefficient allowing for  the redis tr ibut ion in the energy with respec t  to mass  (for the case of 
uniform prolonged heating with an exponentially falling law of energy evolution X ~0.8). 

The la t ter  resul t  is  not obvious for  a two-phase mixture  in which heat is consumed in evaporation. 
The resul t  may be explained by the fact that at low p r e s s u r e s  the adiabatic index of such a mixture may 
be regarded  as approximately constant,  as indicated in Section 1. 

6. Let us now consider  the dependence of the momentum I on the energy concentrat ion and duration. 
Figure  9 shows the ra t io  ~ = I 4 ~ 0 0 / E q  for var ious  E and T obtainedby numerica l  calculation (the c r o s s e s  are  
for  T = 10, and the points for  T = 100). We see that an increase  in the period of heating leads to a cer ta in  r e -  
duction in momentum, but in genera l  the ~ ff ) relat ionship is quite weak. This is quite natural  for  the range 
f>>Q (or E>>I), since in this range we have a l imiting mode of escape of the heated gas [3] corresponding 
to ~---,~o (relation (5.8) was in fact derived for this condition). The gas pa rame te r s  for T>>I are  s imi lar  to 
the pa r ame te r s  in the limiting mode and depend very  little on T. 

The value of I in the case  of Eq/(m0Q) >> 1 may be approximately est imated f rom the express ion 

o 

where )t is the average proport ion of the internal  energy expended in evaporation, while ms is determined 
f rom the relation f ( m  s) =hQ (m s is the a rb i t r a ry  or  nominal limit of evaporation). The quantity h is an un- 
known pa ramete r .  It is simply c lea r  that for E >> 1 the value of ik is not very  great .  

The values of $ obtained f rom Eq. (6.1) are  shown in Fig. 9 by the broken line for  X= 0, 0.2, 0.3, and 
1.0. We see that the numerica l  calculat ions descr ibed above agree fa i r ly  well with the values of •= 0.2 and 
0.3. This may be explained in the following way. For  the mater ia l  to s ta r t  evaporating at p re s su res  below 
cr i t ical  (in a three-dimensional  and quasi-equi l ibr ium fashion), an energy approximately equal to 3RvT(P) 
must  be expended, where T v is  the t empera tu re  of the phase t ransformat ion  at medium p r e s s u r e s  during 
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the evolution of the energy.  A typical  value of RTv/AwQ ~0.1-0.2,  and hence the enthalpy h cor responding  
to the onset of evapora t ion  is  0 .3-0.6Q.  

For  shor t  t imes  (~-~ 1) the c rea t ion  of momen tum is even poss ib le  for  E<< 1 (in con t ras t  to the cases  
here  cons ide red  I- >> 1). Fo r  the m a t e r i a l  to d is in tegra te ,  it is actually not essen t ia l  that it should evap-  
ora te  comple te ly .  I t  is sufficient,  by expending a compara t i ve ly  smal l  amount of energy,  to "break  it  up" 
within a ce r t a in  l aye r .  This kind of rupture  is  quite poss ib le  in the case  of instantaneous heating, s ince 
af ter  the disconnect ion of the source  the in te rac t ing  re laxa t ion  waves  propagat ing  f r o m  the boundar ies  of 
the hea ted  m a t e r i a l  lead to the development  of negat ive s t r e s s e s .  

However ,  as we have a l ready indicated,  such ~c~namic '' e f fects  a re  obse rved  fo r  not ins tantaneous but 
fa i r ly  prolonged heating.  The ef fec ts  may  c l ea r ly  be seen in Fig. 7 (in the case  of v = 10, E= 0.5), while in 
ca se s  with st i l l  lower  E values  spl inter ing should occur  (these effects  have not been cons idered  in the p r e s -  
ent t rea tment ) .  It  would appear  that as the duration fal ls  and the p r e s s u r e  r i ses ,  the re  should be an i n c r e a s e  
in the typical  va lues  of T v and hence h(Tv) and k. Clear ly  the inc rease  in the pa r t  p layed by dynamic effects  
will lead to a reduct ion in ~ with diminishing T. Such an in te rpre ta t ion  of the r e su l t s  of the numer i ca l  ca l -  
culat ions,  however ,  mus t  by no means  be r ega rded  as the final one. 
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